Theor Chem Acc (2003) 110: 352-357
DOI 10.1007/500214-003-0484-9

Regular article

Theoretical
Chemistry Accounts

The curvature of the Arrhenius plots predicted by conventional
canonical transition-state theory in the absence of tunneling

Laura Masgrau, Angels Gonzalez-Lafont, Jos¢ M. Lluch

Departament de Quimica, Universitat Autonoma de Barcelona, 08193, Bellaterra, Barcelona, Spain

Received: 13 April 2003/ Accepted: 13 June 2003 / Published online: 6 October 2003

© Springer-Verlag 2003

Abstract. The reasons for the nonlinearity of the Ar-
rhenius plots of gas-phase reactions are analyzed in de-
tail within the frame of conventional canonical
transition-state theory and in the absence of tunneling
effects. The purpose is to show how the vibrational
normal mode frequencies of reactants and the transition
state determine the curvature of an Arrhenius plot.
Conventional canonical transition-state theory without
tunneling corrections predicts curved Arrhenius plots
with an inflexion point that separates the concave (high-
temperature range) and convex region (at low tempera-
tures). The frequencies of the transitional modes at the
transition-state structure determine the temperature at
which an Arrhenius plot presents upward curvature.
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Introduction

From a wide set of macroscopic measurements of reac-
tion rates, in 1889 Arrhenius obtained empirically that
to a good approximation the rate constants of many
reactions vary with temperature according to the now-
adays well-known Arrhenius equation,

k= Aexp (—f%), (1)

where A is often called the preexponential term or the
frequency factor and FE, is the activation energy. Origi-
nally, both Arrhenius parameters were considered to be
temperature-independent. This way, indeed the corre-
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sponding Arrhenius plot, which is the natural logarithm
of the rate constant versus the reciprocal of the absolute
temperature, turns out to be linear.

However, there are many experimental examples of
nonlinear Arrhenius plots [1, 2, 3, 4, 5, 6, 7]. Sometimes
the plot consists of two straight lines of different slope,
at the regions of low and high temperatures, respectively,
which connect between them by means of a curved line
at the region of intermediate temperatures. This shape of
the plot has been generally attributed to the concurrent
existence of two distinct competing reactions or mech-
anisms, involving two different activation energies, each
one dominating at a particular range of temperatures
[1, 2, 3, 8, 9]. On the other hand, tunneling increases the
rate constant, so causing upward curvature of the
Arrhenius plot at low temperatures and notably dimin-
ishing the activation energy in that temperature region
[4,5,6,7,8,9,10, 11, 12, 13, 14, 15, 16, 17].

In spite of that, it has been found in some cases that
transition-state theory applied to a unique reaction
involving just one reaction mechanism can predict a
nonlinear Arrhenius plot even in the absence of tun-
neling. Thus, conventional canonical transition-state
theory calculations without tunneling by Blais et al. [18]
for the H+ H, reaction provide a large increase (almost
6 kcal/mol) in the activation energy when the tempera-
ture is raised from 300 to 2,400 K. Likewise, improved
canonical variational theory calculations without tun-
neling by Garrett et al. [19] for the O + H, reaction give
an activation energy of 10.7 kcal/mol over the range of
temperatures 318-471 K, but 14.0 kcal/mol within the
range 1,400-1,900 K. Recently, Truhlar and Kohen [20]
have used the microcanonical ensemble to explain why a
deviation of the linearity can occur. The Arrhenius plot
is concave (positive second derivative), linear (zero cur-
vature), or convex (negative second derivative) [21, 22,
23] depending on if the distribution of reaction energies
around the average energy over all reacting systems is
wider than, equal to, or narrower than the distribution
of reactant energies around the average energy over all



systems, whether or not they react. In some cases, this
will depend on the sign of the derivative of the micro-
canonical rate constant with respect to the total energy.

To our knowledge an analysis within the frame of the
conventional canonical transition-state theory of how
the vibrational normal mode frequencies of the reactants
and the transition-state structure determine the curva-
ture of an Arrhenius plot in the absence of tunneling has
not been carried out to date. This is just the purpose of
the present paper. To this aim, we have deduced the
relevant equations and we have used the gas-phase
reactions OH+H,O — H,O+OH and OH -+ CH;SH
— H,O+ CH,SH as representative examples to illus-
trate the concepts [24, 25].

Theory

Let us assume a bimolecular reaction between reactants
A and B containing, respectively, na and ng nuclei, with
n=na+ng. According to the well-known quasi-ther-
modynamic formulation of conventional transition-state
theory, the rate constant in the absence of tunneling is
given by

kT AGH
k(T)—oTK R
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where ¢ is the symmetry factor, kg is Boltzmann’s
constant, 4 is Planck’s constant, K° is the quotient of
the concentrations in the standard state (taken as
1 mol/l), R is the gas constant, and the three exponents
contain, respectively, the standard-state activation
Gibbs free energy, the activation entropy, and the
activation enthalpy. These magnitudes are evaluated on
the dividing surface that intersects the minimum-energy
path (MEP) at the saddle point of the potential-energy
surface.On the other hand, the curvature of an Ar-
rhenius plot at a given temperature 7 can be calculated
as

(2)
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As a consequence, the curvature of an Arrhenius plot
depends on the activation energy and the first derivative
of the activation energy with respect to the temperature.
In addition, the sign of this derivative will determine if
the plot is concave or convex.

In the absence of tunneling the following equation
holds [26] for a gas-phase bimolecular reaction
E, = AHY 4 2RT, (6)
and the activation enthalpy can be obtained from
molecular quantities using the equations of the statistical
thermodynamics. So, within the ideal gas, rigid rotor,
and harmonic oscillator models, the internal energy, E,
of a mole of nonlinear polyatomic molecules (with m
nuclei each) can be calculated by

=

Oy, 7 | _De
exp(%)—l ksT

2T

where 0,; = hv;/kg is called the characteristic vibra-
tional temperature of vibrational normal mode
(whose associated frequency is v;) and D, is the depth
of the minimum-energy structure corresponding to the
ground electronic state of the molecule (the zero of the
electronic energy is taken to be the separated, elec-
tronically unexcited atoms at rest). The four terms in
the second member in Eq. (7) correspond, respectively,
to the translational, rotational, vibrational, and elec-
tronic contribution to the internal energy. Note that
for a linear molecule, the rotational contribution to
the internal energy is just RT (instead of 3R7/2) and
the sum in Eq. (7) extends to 3m -5 vibrational
modes.

Applying Eq. (7) for the transition-state structure
(note that the degree of freedom corresponding to the
transition vector at the saddle point has to be eliminated,
leading to just 3n—7 vibrational normal modes) and the
reactants A and B, introducing the enthalpy as
H=FE+pV=FE+ RT, obtaining the activation enthalpy
as AH=H*-H,-Hy, and deriving Eq. (6) with
respect to the temperature leads to

o\’ o
(%) exp <%>
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where 83,3, 0@, and 05 are the characteristic vibrational
temperatures corresponding to the normal modes of the

(7)
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transition-state structure, reactant A and reactant B,
respectively.

The three sums in the second member in Eq. (8)
come from the vibrational contributions of the transi-
tion-state structure, reactant A and reactant B, respec-
tively. It can be easily seen that each fraction within the
sum tends to 1 as 0/T goes to zero (in this case each
vibrational normal mode would behave as a classical
degree of freedom). Then if the temperature is high
enough and the frequencies are small enough, ‘:jET“' —
—2R+ 5R = 3R > 0, and the Arrhenius plot would be
concave at that range of temperatures. In contrast, each
fraction tends to zero as 0/T goes to infinity. Then, at
low enough temperatures and with high enough fre-
quencies, %5 — —2R<0, and the Arrhenius plot would
be convex at that range of temperatures. Normally the
scenario is intermediate between these two extreme
limits, in such a way that %ET'“‘ = aR, where o will depend
on the temperature according to Eq. (8). Using Eq. (5)
we can write

d?Ink(T) e
(Y1)

If o is considered to be independent of the tempera-
ture, Eq. (9) becomes a linear differential equation with
constant coefficients, and it can be easily integrated to
give

©)

) 1
lnk(T):T—i-b—ocln (T) (10)
or, what is equivalent,
E
k(T) = BT” exp <—?) (11)

This is the well-known three-parameter expression
used by many authors [27, 28, 29, 30, 31, 32, 33, 34,
35] to fit experimental rate constants, especially when
wide temperature ranges are covered and a pro-
nounced curvature in the Arrhenius plots is observed.
A positive temperature exponent indicates upward
curvature at high temperature (the plot is concave).
Note that the parameters B and E do not coincide
with the preexponential factor 4 and the activation
energy FE,/R corresponding to an Arrhenius equation,
unless o =0.

To summarize, three scenarios could be envisaged:

1. If =0, the rate constants fit exactly to the original
Arrhenius equation with E, independent of the tem-
perature, which provides a strictly linear Arrhenius
plot.

2. If o # 0, but is independent of temperature, the rate
constants fit exactly to the three-parameter equation
(Eq. 11). This implies an FE, that depends on tem-
perature and, therefore, a curved Arrhenius plot
(concave for o> 0, but convex for o <0).

3. If o depends on the temperature in general no ana-
lytical function will be able to provide an exact fitting
of the rate constants as a function of the temperature.
In this case too E, will depend on the temperature
and the Arrhenius plot will be nonlinear (concave at
the range of temperatures for which o >0, but convex
at the range of temperatures for which o <0).

It has to be emphasized that all chemical reactions
will correspond to the third case in a rigorous sense.
However, depending on the precision that one needs,
for a particular reaction one can assume that the
second scenario, or even the first one, reasonably
holds. This is the reason for which many Arrhenius
plots are considered to be linear (really roughly linear)
in practice, although they are actually curved even in
the absence of tunneling. In addition it has to be
noted that, according to Egs. (3), (4), and (5), a high
activation energy dampens (because it gives a big
denominator in Eq. 3) the effect of the change of the
slope in the Arrhenius plot. Thus, in regions of high
activation energies the Arrhenius plot can seem linear
at first glance although its slope (i.e., the corre-
sponding activation energy) changes with the temper-
ature.

Note that if reactant A is a linear molecule, the first
term in the second member of Eq. (8) has to be —1.5R
(instead of —2R) and the second sum in that second
member has to be extended to 3na-3.

Computational details

The electronic structure information used in this paper has been
taken from our previous works [24, 25]. In particular, for the gas-
phase radical-molecule identity reaction OH+ H,0O — H,0+ OH
the 6-311G(3d,2p) basis set at the unrestricted Moller—Plesset
second-order (full) perturbation theory electronic level was used to
optimize the stationary point geometries and to calculate the har-
monic vibrational frequencies, which were scaled using a factor of
0.9496 [24].

For the gas-phase reaction OH+ CH3;SH — H,O+ CH,SH,
the stationary points were initially located at the MP2(full)/cc-
pVDZ potential-energy surface [25]. The MEP in an isoinertial
mass-weighted Cartesian coordinate system was calculated starting
from the MP2(full)/cc-pVDZ saddle point by following the Page—
Mclver algorithm [36]. The energy was recalculated at 15 nonsta-
tionary points along this MEP by using the MCCM-CCSD(T)-CO-
2m multilevel method [37]. This multicoefficient correlation method
[38, 39, 40, 41, 42] tries to extrapolate to the full configuration
interaction and to the infinite-basis set limits. The mapped inter-
polated scheme for single-point energy corrections [43] was em-
ployed to correct the energy of the MP2(full)/cc-pVDZ MEP with
the MCCM-CCSD(T)-CO-2m energy calculations. In order to
apply the conventional transition-state theory the maximum
potential energy point along the corrected MEP was considered to
play the role of the saddle point at the MCCM-CCSD(T)-CO-2m
level. The harmonic vibrational frequencies, calculated at the
MP2(full)/cc-pVDZ level, were scaled using a factor of 0.9790 and
the RODS algorithm [44] was applied in order to improve them
along the MEP.

The symmetry factor ¢ turns out to be 2 for both reactions.
GAUSSIANOS [45] and POLYRATESR.7.2 [46] codes were used for
the electronic structure calculations and the determination of the
rate constants according to the conventional transition-state
theory, respectively.



We have previously demonstrated that the rate constants of
the two reactions calculated at the previously mentioned elec-
tronic levels lead to clearly curved Arrhenius plots when varia-
tional effects and tunneling are taken into account. In this work
we maintained the same electronic levels, but neither variational
effects nor tunneling were introduced in order to show that some
curvature of the Arrhenius plots already appears when merely
employing conventional transition-state theory according to
Eq. (2).

Numerical application

In this section we first present the conventional transi-
tion-state theory (without tunneling) results corre-
sponding to OH+H,0 — H,O+OH (R1), and later
those corresponding to OH + CH3SH — H,O+ CH,SH
(R2).

Once calculated the corresponding rate constants
according to Eq. (2), the Arrhenius plot for R1 within
the range of temperatures 100-1,000 K is shown in
Fig. 1. At the scale of the drawing (indeed a normal
scale) the plot seems to be clearly linear. Then, an acti-
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Fig. 1. Arrhenius plot for reaction R1 according to the conven-
tional transition-state theory. The reaction rate constants are given
in cubic centimeters per molecule per second
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Fig. 2. Activation energy as a function of the temperature for
reaction R1 according to the conventional transition-state theory
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vation energy (arising from the slope of the Arrhenius
plot) independent of the temperature could be predicted.
Very interestingly the activation energy behaves actually
in a completely different way. So, the activation energy
calculated according to Eq. (4) is displayed in Fig. 2 as a
function of the temperature. It can be seen that the
activation energy is very far from being constant: It
turns out to be a decreasing function at very low
temperatures, it reaches a minimum value just somewhat
after 300 K, and it becomes an increasing function
at higher temperatures. A significant difference of more
than 2 kcal/mol exists between the minimum value and
the higher activation energy (at 1,000 K) shown in
Fig. 2.

To shed light on that apparent contradiction we used
the vibrational frequencies of the reactants and the
transition-state structure (Table 1) to calculate directly
the first derivative of the activation energy with respect
to the temperature by means of Eq. (8), which has to be
conveniently modified, as explained in the Theory
section, owing to the fact that one of the reactants, OH,
is a linear molecule. The results in units of R (i.e., they
correspond to the parameter « defined earlier) are given
in Table 2. It can be seen that ¢ increases monotonically
with the temperature (the third of the scenarios
described earlier), which confirms that the activation
energy depends on the temperature, in good agreement
with Fig. 2. Only at 306 K « is zero, which just marks
the temperature at which the activation energy reaches

Table 1. Vibrational frequencies (in reciprocal centimeters; see the
Computational details section) of the reactants and the transition-
state structure (7'S) for reaction R1

OH H,0 TS

3,643 3,795
3,684

1,598

3,659
3,659
2,254
1,678
1,321

616
479

0NN B W~

Table 2. First derivative of the activation energy with respect to
the temperature (in units of R, see text) for reaction R1 according
to the conventional transition-state theory

T (K) o T (K) o

100 -1.44 550 1.27
150 -1.18 600 1.45
200 —-0.80 650 1.61
250 —-0.41 700 1.75
300 —-0.04 750 1.88
306 0.00 800 1.99
350 0.29 850 2.08
400 0.58 900 2.16
450 0.83 950 2.23
500 1.06 1,000 2.30
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its minimum value (Fig. 2). Then, observing the sign
of the first derivative of the activation energy, we can
conclude that the corresponding Arrhenius plot is
actually curved, convex, or concave, respectively, below
or above 306 K (where the inflexion point appears).
Why is this not apparent in Fig. 1? The reason is that the
curvature depends on both the numerator and the
denominator of the quotient in the second member of
Eq. (3). In this case the activation energy is big enough
(11-13 kcal/mol) to mask the effect of this first deriva-
tive, this way producing an Arrhenius plot strictly
curved, but apparently linear at the scale of the drawing.

Let us turn our attention to R2. This time the
corresponding Arrhenius plot (Fig. 3) appears to be
clearly curved, being concave over the whole range of
temperatures 100-1,000 K. As a consequence, the
activation energy increases monotonically with the
temperature (Fig. 4) from 2.02 kcal/mol at 100 K to
5.46 kcal/mol at 1,000 K. In addition, a minimum exists
just somewhat after 80 K. From the vibrational
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Fig. 3. Arrhenius plot for reaction R2 according to the conven-
tional transition-state theory. The reaction rate constants are given
in cubic centimeters per molecule per second
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Fig. 4. Activation energy as a function of the temperature for
reaction R2 according to the conventional transition-state theory

frequencies given in Table 3, we obtained, using the
modified version of Eq. (8) to account for one linear
reactant, the values of the first derivatives of the acti-
vation energy in units of R (Table 4). The positive and
increasing values with the temperature (83-1,000 K) of
the o confirm the upward curvature of the Arrhenius
plot at high temperatures. Note that in this case the
inflexion point (where o =0) appears at temperatures as
low as 83 K. Below that temperature (out of the range
represented in Fig. 3) one would expect a convex
Arrhenius plot, and the activation energy increases as
the temperature decreases (Fig. 4).

From the analysis of the results of both reactions
along with the equations developed in the Theory
section some conclusions can be extracted. Firstly,
conventional canonical transition-state theory, even in
the absence of variational and tunneling effects, predicts
actually curved Arrhenius plots with an inflexion point
(at which ‘éET“ = 0) that separates the concave region at
high temperatures from the convex region at low tem-
peratures. The temperature at which the inflexion point
appears depends on the frequencies of the vibrational
normal modes corresponding to the reactants and to the

Table 3. Vibrational frequencies (in reciprocal centimeters; see the
Computational details section) of the reactants and the TS for re-
action R2

OH CH,SH TS
1 3,714 3,154 3,699
2 3,150 3,167
3 3,042 3,082
4 2,732 2,731
5 1,462 2,305
6 1,449 1,498
7 1,336 1,405
8 1,082 1,363
9 963 1,086
10 793 1,011
11 725 812
12 256 751
13 693
14 334
15 229
16 167
17 95

Table 4. First derivative of the activation energy with respect to
the temperature (in units of R, see text) for reaction R2 according
to the conventional transition-state theory

T (K) o T (K) o

83 0.00 550 2.19
100 0.26 600 2.26
150 0.80 650 2.32
200 1.16 700 2.38
250 1.42 750 2.42
300 1.62 800 2.46
350 1.78 850 2.49
400 1.91 900 2.52
450 2.02 950 2.54
500 2.11 1,000 2.56




transition-state structure. The vibrational contribution
to the first derivative of the activation energy is largely
dominated by the frequencies of the transitional modes
(those vibrational modes at the transition-state structure
that comes from translational or rotational modes at the
reactants). The rest of the vibrational modes of the
transition-state structure roughly compensate the con-
tribution of the vibrational modes of the reactants, but
the transitional modes exert a net effect. If the fre-
quencies of the transitional modes at the transition-state
structure are low (the transition-state structure is rather
loose) the inflexion point appears at very low tempera-
tures (83 K for R2), but the higher those frequencies
(transition-state structure becoming tighter) the higher
the temperature of the inflexion point is (so, 306 K for
R1). In other words, the values of the partition functions
associated with the transitional modes at the transition-
state structure increase with the temperature (in this way
contributing to augment the rate constant), but the
lower the corresponding frequencies the lower the tem-
peratures at which this effect is already significant (so
producing an upward curvature of the Arrhenius plot).
Finally, it has to be emphasized that the curvature of
a transition-state-theory Arrhenius plot depends on the
ratio between the first derivative of the activation energy
with respect to the temperature and an expression that
contains a power of the activation energy. In this way,
an activation energy high enough (an important slope)
will hide the real curved character, so producing an
apparently linear plot. However, very interestingly, even
in that case, the activation energy can change signifi-
cantly as a function of the temperature. In other words,
an apparently linear Arrhenius plot does not warrant an
activation energy independent of the temperature.
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